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Rest Frame Properties of the Proton

George L. Strobel1,2

Received January 23, 1998

The proton is modeled as three quarks of small current quark mass. The three-
body Dirac equation is solved with spin-independent central diagonal linear
confining potentials with an attractive Coulombic term in a relativistic three-
quark model. Hyperspherical coordinates are used, and the bound state is found
analytically. After integrating over the hyperangles, the Hamiltonian is an 8 by 8
matrix of coupled first-order differential equations in one variable, the hyperradius.
These are analytically solved in hypercentral approximation. For the (1/2+)3

ground-state configuration in the nonrelativistic large-quark-mas s limit, there are
no nodes in the wave function. However, in the extreme relativistic limit of small
current quark masses of a few MeV, the expectation value of the number of nodes
is about 1.30 when the potential parameters are chosen to reproduce the proton
rms charge radius. The quarks are assumed to possess a Pauli anomalous magnetic
moment, like that of the electron and muon of ( a /2 p )(e /m). Assuming all three
quarks have equal mass, one can fit the rest energy, magnetic moment, rms charge
radius, and axial charge of the proton with this relativistic three-body Dirac
equation model. The solution found shows the necessity of including all
components of the composite three-quark wave function, as the upper component
contributes only 0.585 to the norm.

1. INTRODUCTION

The case for nonrelativistic constituent quark masses within the nucleon

is that it works (Bowler, 1990; Bhaduri, 1988). The constituent quarks are

assumed bound in S states in a potential well coupled to total angular momen-

tum 1/2 for the nucleon. Setting their masses to about 330 MeV allows the

proton experimental magnetic moment to be reproduced by the Dirac magnetic
moment of the bound quarks. The attractive binding potential is such that
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the total energy of the three-quark system matches the proton rest energy.

The potentials are small, and the problem is nonrelativistic due to the large

quark masses assumed. Recently, relativistic extensions of the constituent
quark model of mesons as a quark±antiquark bound pair have shown the

importance of the negative-energy components (Tiemiejer and Tjon, 1993).

This paper is instead concerned with using current quark masses (Particle

Data Group, 1994) in a necessarily relativistic three-quark modeling of the

nucleon. Current quark masses for the up, down quarks in the nucleon are

in the 2- to 10-MeV range. The quark dynamics is assumed to be described
by the three-body Dirac equation solved in hypercentral approximation. This

properly handles the center-of-mass problem in the rest frame of the system.

The proton properties will be calculated using the composite three-quark

wave function found from solving the three-body Dirac equation. The masses

of the u and d quark will generally be taken as the same, but in the next

section, temporarily all three masses will be assumed different.
Central diagonal linear confinement potentials (Semay and Ceuleneer,

1993) between the quarks will be used with an attractive Coulombic term. The

attractive Coulombic term is included as reminiscent of one-gluon exchange

between quarks. Previously quadratic confining potentials have been used

that led to Gaussian-type wave functions (Semay and Ceuleneer, 1993; Strobel
and Hughes, 1987; Strobel and Pfenninger, 1987; Strobel and Shitikova,

1996). Here hypercentral potentials with a given linear confinment plus

Coulombic dependence in the hyperradius r are considered. These result from

hyperangular averages (Strobel, 1996a) of quark±quark potentials that have

the same analytic dependence in the interquark separations. These potentials

have previously been used in studies of the Ioffe constants of the proton
and Roper resonance (Strobel and Shitikova, 1997). The model has three

parametersÐ the quark mass, the confining linear size parameter L, and the

attractive Coulombic potential coefficient. These potential coefficients are

determined by reproducing the proton rest energy and rms charge radius.

The hyperspherical method has been applied to the three-body Dirac

equation (Strobel and Hughes, 1987; Strobel and Pfenninger, 1987; Strobel,
1986), where hyperangular averages of a diagonal central potential and the

relativistic kinetic energy operator were evaluated. The basic idea is to use

the chain rule of calculus to change the partial derivatives of the kinetic

energy operator with respect to r1, etc., into partial derivatives with respect

to the hyperradius. The hyperspherical formulation expands the three-body

bound-state wave function into a set of configurations each of which has a
hyperradial and a hyperangular factor.

The composite three-quark wave function is labeled by the J and parity

quantum numbers of the upper component of the orbitals occupied by the

three quarks. The positive-party (1/2+)3 configuration is studied here. Other



Rest Frame Properties of the Proton 2003

configurations (Strobel, 1996b), such as the (1/2+)(1/2 2 ) or the (1/2 2 )2(1/2+),

result in Dirac magnetic moments of less than 1 nuclear magneton, and are

discarded on this basis. The (1/2 2 )3 configuration has a Dirac magnetic
moment of 8/3 NM, but has negative parity. Orbital excited configurations

such as (3/2+)2(1/2+) are not considered here as being major contributors to

the proton ground-state wave function. The (1/2+)3 configuration with a linear

confining potential and massless quarks has a Dirac magnetic moment of

2.763 NM when maximized by varying the linear potential size parameter

(Strobel, 1996a). A Pauli anomalous magnetic moment is ascribed to each
quark, as exists for the electron and muon per QED, of ( a /2 p )(e /m). The

quarks are assumed to be in the (1/2+)3 configuration of positive parity, with

the spins coupled to the proton spin of 1/2. The proton/neutron magnetic

moment ratio of 2 1.46 is close to the valence-quark-only ratio of 2 1.50.

This near agreement is a success of the valence quark modeling. The proton

magnetic moment is here described by the Dirac and anomalous magnetic
moments from the three quarks. There is no anomalous quark magnetic

moment contribution to the neutron for equal-mass quarks. Other contribu-

tions to the proton magnetic moment may be small. Attributing the deviation

from valence quark contributions to an SU(2) symmetric pion cloud or anti-

quark±quark contribution (Hogasson and Myhrer, 1988; Barik, et al., 1990)
predicts such a pion contribution to be about 0.16 NM. Looking at QCD

symmetries, Leinweber (1996) gets a disconnected sea quark contribution of

2 0.17 NM and a strange quark contribution of 0.25 NM assuming u and d
quark masses are equal. Such possible pion, mesonic, strange, or sea quark

contributions to the proton magnetic moment are neglected here. Their inclu-

sion would lower the anomalous magnetic moment contribution from the
quarks needed to agree with the experimental values. When the model parame-

ters are adjusted to reproduce the proton rms charge radius and magnetic

moment, small current quark masses of the order of 10 MeV or less are

required by this model. The Dirac magnetic moment of the bound quarks is

the dominant contribution to the total magnetic moment, with the Pauli

contribution only about 5±20%.

2. THREE-BODY DIRAC EQUATION

The composite field for a three-body system is given by

F (x1, x2, x3) 5 C (x1) C (x2) C (x3) (1)

where the C (x) are single-particle wave functions and x is a four-vector

describing the particle coordinates. One obtains for the composite field the
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three-body Dirac equation (Barut and Komy, 1985; Barut and Strobel, 1986):

H [( g m i - m 2 m1) ^ g m h m ^ g m h m 1 g m h m ^ ( g m i - m 2 m2) ^ g m h m

1 g m h m ^ g m h m ^ ( g m i - m 2 m3) 2 o
i , j

Vij (dij)] J
3 F (x1, x2, x3) 5 0 (2)

Here h m is a timelike four-velocity vector of the system. In the center-of-

momentum frame, h m is (1, 0, 0, 0). dij is the transverse difference of the

two four-vectors xi and xj. Here xij is defined as (xi 2 xj)
2, so that the transverse

difference is

dij 5 { 2 (xi 2 xj)
2 1 (xij ? h )2}1/2 (3)

In the center-of-momentum frame, the transverse difference simplifies to the

magnitude of the usual radial separation of the two particles, rij. There are

three times in general, but in the center-of-momentum frame, the Hamiltonian

depends on one time only, the time of the center of momentum or the rest
frame of the proton.

The ª lab frameº four-momenta of the particles are p1, p2, and p3 and

the masses are m1, m2, and m3. We introduce the center-of-mass and relative

four-momenta by

P 5 p1 1 p2 1 p3

p 1 5 (m2p1 2 m1p2)/m (4)

p 2 5 [mp3 2 m3 (p1 1 p2)]/M

where for convenience we introduced

m 5 m1 1 m2 and M 5 m1 1 m2 1 m3

p 1 and p 2 are four-dimensional generalizations of the Jacobi vectors

commonly used in three-body studies. We also define the center-of-mass

coordinates and the relative four-vector coordinates through the equations

MR 5 m1x1 1 m2x2 1 m3x3

r1 5 x1 2 x2 (5)

mr2 5 2 m1x1 2 m2x2 1 mx3

These equations can be inverted, of course, resulting in

x1 5 R 1 m2r1/m 2 m3r2/M, p1 5 m1P /M 1 p 1 2 m1 p 2/m

x2 5 R 2 m1r1/m 2 m3r2/M, p2 5 m2P /M 2 m2 p 2/m 2 p 1 (6)

x3 5 R 1 mr2/M, p3 5 m3P /M 1 p 2
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If we substitute the relative momenta for the individual momenta, the

zeroth or time coefficients of p 0
1 and p 0

2 vanish. The only time component

surviving in the equation is the center-of-mass time conjugate to P 0, as
we obtain

5
g 0 g 0 g 0P 0 1 ( 2

-
g ?

-
P m1/M 2 m1) g 0 g 0

1 g 0 ( 2
-

g ?
-

P m2/M 2 m2) g 0 1 g 0 g 0( 2
-

g ?
-

P m3/ M 2 m3)

2
-

g ?
-

p 1 g 0 g 0 1 g 0 -
g ?

-
p 1 g 0 1

-
g ?

-
p 2 g 0 g 0m1/m

1 g 0 -
g ?

-
p 2 g 0m2/m 2 g 0 g 0 -

g ?
-

p 2 2 ( 1 V12 1 V23 1 V31) 6
3 F 5 0 (7)

The ordering in each term specifies the particle on which the gamma matrices

apply. Multiplying the above by a g 0 for each particle allows one to solve

for P 0, the center-of-mass energy, and the Hamiltonian equation results. We

solve in the center-of-momentum frame, where the total three-momentum

vector
-

P is zero.

The QCD equations for the potentials from three quarks in a color
singlet, when solved, probably will result in color-dependent potentials. The

potentials indicated here are presumably then the result from averages over

such color dependence. In the nonrelativistic approach, the Lorentz character-

istics of the potential need not be specified. For the relativistic case, a central

diagonal spin-independent potential has previously been used (Strobel and

Shitikova, 1996; Strobel and Shitikova, 1997; Semay et al., 1993). The
confining potential considered here is

V12 5 [7 1 4 b 1 1 4 b 2 1 b 1 b 2] cr12 /16 (8)

where c is a constant adjusted to reproduce the proton rest energy. The

coefficients have been normalized to sum to unity, be symmetric with respect
to particle exchange, as they must for identical quarks, and to satisfy the

Semay condition (Semay et al., 1993) for avoiding the Klein paradox. The

linear confinment dependence is a way of treating strongly interacting QCD

fields as lying along flux tubes between the quarks. The detection of only

particles that are color singlets can be interpreted as indicating that color
field lines all start or end on quarks or antiquarks. The linear confinment

potential comes from assuming that the field energy lies along flux tubes of

constant cross-sectional area, such that the quark potential energy is then

proportional to the distance between the interacting quarks. The Hamiltonian

is treated as independent of color.

The composite three-quark wave function F is written as

F 5 c color c fc c space (9)
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The color singlet part consists of a color factor,

c color 5 det(abc)/ = 6 (10)

where a, b, and c denote the three color indices of the quarks. This color

factor is totally antisymmetric upon exchange of color indices of the three
quarks. There is also a totally symmetric flavor and angular momentum

coupling part of the composite three-quark wave function c fc which can be

expressed as the sum of two parts:

c fc 5 ( x s[j1, j2]1, j3JMz & 1 x A[j1, j2]0, j3JMz & )/ = 2 (11)

x s and x a are the flavor parts of the wave function that are symmetric and

antisymmetric, respectively, upon exchange of the first pair of coordinates.

For the proton, J is one-half. The orbital part of the wave function for each

quark is a two-component Dirac spinor coupled, for example, for particle 1 as

f m
j p (r1) 5 é

Cl(r1/ r )lY ml
l z 1/2[l, 1/2] jm &

i
-

s 1 ? rÃ1Cl8(r1/ r )l8Y ml8
l8 z 1/2[l8, 1/2] jm & ù (12)

l and l8 are determined from the total angular momentum j and the parity p
of the orbital the quark occupies. There is also an eight-component hyperradial

dependent part of the composite three-quark wave function. After the hyperan-

gular integration is done, the Hamiltonian is a set of eight coupled first-order

linear differential equations involving the eight hyperradial components as

unknowns to be solved for. The details are the same as in Strobel (1996b).

The hyperspherical coordinates are used. These consist of a hyperradius and
five hyperangles. One possible set of these coordinates is as follows. The

location of the three masses determines a triangle locating the masses at the

corners. The triangle has a normal. The spherical polar coordinates of the

normal are the first two hyperangles. Any two interior angles of the triangle

are the next two hyperangles. The azimuthal orientation of the triangle about

the normal is the fifth hyperangle. The hyperradius is given as

r 2 5 r 2
1 1 r 2

2 1 r 2
3 5 2r 2/3 (13)

2.1. The Hyperangular Separation

The composite three-quark wave function is expanded into hyperspheri-
cal harmonics and the integration over hyperangles is done (Baz and Zhukov,

1970). The result is analogous to the two-body expansion in spherical harmon-

ics. For a two-body problem with a potential V, the SchroÈ dinger equation is

[ 2 " 2 ¹ 2/2m 1 V (
-
r )] C 5 E C (14)
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Expanding in spherical harmonics and integrating over angles results in

[ 2 ( " 2/2m) d 2/dr2 1 L (L 1 1)/2mr2 2 E ]RLYLM

5 2 o ^ LM ) V ) L8 M 8 & RL8 YL8M8 (15)

Now if the potential has a spherical symmetry in the two-body case, the
right-hand side reduces to a single term where L8M 8 equals LM, and only a

single term of the summation survives and the equations uncouple. In the

three-body case, if the potential is a quadratic function of the separation

between the interacting particles, then the sum of the potentials may depend

only on the hyperradius, and similiarly the summation over hyperharmonics

reduces to a single term. A linear confining potential with an attractive
Coulombic term is used here. After the hyperangular integration, the equations

are solved in hypercentral approximation, namely only the term diagonal in

quantum numbers is retained of the potential matrix element, and the nondiag-

onal terms are neglected, but are not zero. The equations that result are a

set of eight coupled first-order differential equations in one variable, the

hyperradius. The unknowns are the eight hyperradial dependent components
of the space part of the three-quark composite wave function, Ri.

With equal u, d quark masses, all quarks in the proton have the same

mass. For the (1/2+)3 configuration considered, each quark has the same set

of quantum numbers. Hence the eight-component composite wave function

has the symmetry that R2 5 R3 5 R5 and that R4 5 R6 5 R7. The eight-

component Hamiltonian equation, after hyperangular integration, simplifies
to a set of coupled linear equations involving the four unknown hyperradial

components. For the (1/2+)3 configuration, these equations are given by

3
(3M 2 E 1 V1) 2 D (5) 0 0

D (0) (M 2 E 1 V2) 2 D (6)/2 0

0 2D ( 2 1) ( 2 M 2 E 1 V4) 2 D (7)/5

0 0 3D( 2 2) ( 2 3M 2 E 1 V8) 4
3 3

R1

R2

R4

R8 4 5 0 (16)

This matrix operates on the hyperradial components R1, R2, R4, and R8. The

relativistic kinetic energy appears in the operator

D (n) 5 d /dr 1 n /r (17)
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After integrating over the hyperangles, the norm for the composite three-

quark wave function in terms of the eight components Ri is

1 5 N 2 (2/ p 3/2) o
i # r 5 d r [Ri]

2/ G [( L 1 6)/2] (18)

G (n) is the gamma function of order n, and L is twice the orbital angular

momentum associated with a given component of the composite three-quark
wave function, ranging from 0 to 3 for the configurations considered here.

The linear confining hypercentral potential and the solution determined

from it are now presented. After the hyperangular integration, the sum of

the three pairwise quark potentials is the hypercentral potential:

Vi 5 ai r 1 ki 1 bi/r (19)

The solution and the potential constants are expressed in terms of the proton

rest energy E, the quark mass M, and a size parameter L determined by
reproducing the rms charge radius of the proton:

component component constant

R1 5 A exp( 2 Lr) A 5 1

R2 5 R3 5 R5 5 Br exp( 2 Lr) B 5 2 (E 2 3M )/6 (20)

R4 5 R6 5 R7 5 Cr2 exp( 2 Lr) C 5 2 (E 2 M )B /4

R8 5 Dr3 exp( 2 Lr) D 5 2 (E 1 M )C /2

The hypercentral potential constants are as follows:

index L ai ki bi

1 0 (E 2 3M )L /6 0 0

2 2 (E 2 M )L /8 0 2 6L /(E 2 3M )

4 4 (E 1 M )L /10 0 2 8L /(E 2 M )

8 6 0 (E 1 3M ) 2 6L /(E 1 M )

Solutions for other configurations can be found in Strobel (1996b). The

linear confining hypercentral potential with a Coulombic attractive term

leads to an exponential hyperradial dependence for each component of the

composite three-quark wave function.

2.2. One-Body Operators

With F /r and G /r denoting, respectively, the upper and lower radial

components of a particle obeying the one-body Dirac equation, the radial

Dirac equation becomes
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[M 1 S 2 E 1 V ]F 1 [(k /r) 2 d /dr]G 5 0 (21)

[(k /r) 1 d /dr]F 1 [ 2 M 2 S 2 E 1 V ]G 5 0 (22)

Here, as usual, k is plus or minus (J 1 1/2), depending on the total angular

momentum J and the parity. V and S are the zeroth components of a vector

potential and a scalar potential respectively. The normalization is

1 5 # [F 2 1 G 2] dr (23)

The axial charge is

Ga 5 (5/3) # [F 2 2 G 2/3] dr (24)

The magnetic moment operator is

m 5 I ? area 5 e
-
r ^

-
v /2 5 ec

-
r ^

-
a /2 (25)

Here
-

a are the Dirac equation matrices. For a particle of electric charge e
confined into a bound state characterized by the energy E and by k, the

magnetic moment (Perelomov and Popov 1970; Smith and Lewin, 1980) is

m 5 [4kEe/(4k 2 2 1)] # [FrG] dr (26)

2.3. Failure of Schmidt-Limit Conditions for Quarks

The Schmidt limit is successful for predicting the magnetic moment for

odd-A nuclei. It comes from assuming that the magnetic moment is due solely

to the last unpaired nucleon. The nucleon’ s motion is assumed to be described

by the Dirac equation, and the limit is taken that the energy E approaches
the mass M of the bound fermion. The asymptotic potentials V and S must

be negligible compared to the mass (Miller, 1975; Marganeau, 1940). For

the k 5 2 1, (1/2+) state, a consequences is that the magnetic moment in

nuclear magnetons is m 5 e " /2mc. This limit does not apply to bound quarks

with e and m just becoming the quark charge and mass if the quarks are

bound by confining potentials. We consider quadratic and linear confining
potentials here for the quarks. This means the conditions for the Schmidt

limit to apply are not met for bound quarks, as the asymptotic potentials are

not small compared to the quark mass or energy. For the one-body Dirac

equation (1/2+) state and a quadratic confining potential the equation can be
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solved for F and G analytically, resulting in the magnetic moment becoming,

in nuclear magnetons,

m 5 4Mp/(3E 2 M ) (27)

Even if the mass M is set to the proton mass Mp , as the energy E approaches

the mass, the magnetic moment is 2 NM, not 1 NM for this quadratic

confining potential.

With a linear confining potential including a constant and an attractive

Coulombic potential term, the solution to the k 5 2 1 Dirac equation is

F 5 A exp( 2 Lr) and G 5 Br exp( 2 Lr) with B /A 5 2 (E 2 M )/3

The magnetic moment for the linear confining potential is then found

to be

m 5 4(E 2 M )Mp/[3L 2 1 (E 2 M )2] (28)

The confining potential is proportional to the size parameter. In the nonrelativ-

istic limit where E approaches M, the Dirac magnetic moment vanishes in
the linear confining potential case. This difference illustrates one weakness of

the constituent quark approach to the magnetic moment of confined fermions

(Strobel, 1997). The Schmidt value for the magnetic moment does not tie

directly to the quark mass with potentials that are not asymptotically small

in comparison to the quark mass or energy. This difference carries over to

the three-body Dirac equation results for magnetic moments. Small current
quark masses are used here. The magnetic moments are determined from

their composite three-quark wave function expectation values and not from

the Schmidt limits.

3. CALCULATIONS OF REST FRAME PROTON PROPERTIES

3.1. Nodes in the Wave Function

The positive-parity (1/2+)3 configuration and the negative-parity (1/2 2 )3

configurations are quite similiar in the massless limit where the large and

small components just replace each other up to a possible phase. In the

nonrelativistic limit with large quark masses of one-third of the proton mass,

these configurations have 0 and 3 nodes, respectively. However, in the extreme

relativistic small-quark-mass limit of interest here, the number of nodes is

about the same for either configuration. For the linear confining hypercentral
potential, when the potential length parameter is fixed at L 5 0.538 GeV, to

reproduce the proton rms charge radius, the number of nodes is 1.30. This

is the expectation value of the number of nodes in the wave function associated

with each component of the eight-component composite wave function. The
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number of nodes versus assumed quark mass can be seen for both configura-

tions in Fig. 1. The number of nodes decreases to zero for the positive-parity

configuration as the quark mass approaches one-third of the proton mass.
For the negative-parity configuration, the number of nodes rises toward 1.65

in the same limit. In the nearly massless limit, both configurations predict a

similiar value for the number of nodes.

3.2. Magnetic Moment Predictions

The linear confinement potential parameter L that results in reproducing

the proton rms charge radius is shown in Fig. 2. For small quark masses of

a few MeV, the length parameter is about 0.538 GeV. For larger quark masses

the length parameter decreases to about 0.36 GeV. In Fig. 3 the Dirac magnetic

moment is shown for massless quarks, and for 50-MeV quark masses. The

higher curve, for massless quarks, applies to either a (1/2+)3 or a (1/2 2 )3

configuration. The (1/2+)3 configuration predicts a monotonically lower Dirac

magnetic moment as the quark mass is increases. The (1/2 2 )3 configuration

predicts an increasing Dirac magnetic moment as the quark mass increases,

holding the potential length parameter constant. For a size parameter that

reproduces the proton rms charge radius, the Dirac magnetic moment is about

2.18 NM for the (1/2+)3 configuration. The mixed configurations of (1/2 2 )2

(1/2+) or (1/2+)2(1/2 2 ) result in Dirac magnetic moments systematically about

Fig. 1. Node expectation value for the (1/2+)3 and the (1/2 2 )3 configurations versus the quark

mass in GeV. The length parameter of the linear confining hypercentral potential is fixed at

L 5 0.538 GeV to reproduce the proton rms charge radius. The upper curve is for the negative-

parity configuration, the lower curve is for the positive-parity configuration.
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Fig. 2. The length parameter of the linear confinement hypercentral potential that reproduces

the proton rms charge radius versus quark mass, for the (1/2+)3 configuration.

Fig. 3. Dirac magnetic moment for the proton with the linear confining hypercentral potential.

The upper curve is for both the (1/2+)3 and (1/2 2 )3 configurations of positive and negative

parity, respectively, with massless quarks. The lower curve is the (1/2+)3 configuration of

positive parity with 50-MeV quark masses.
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one-third of the symmetric (1/2+)3 configuration for the same parameters.

For this reason these mixed configurations are dropped from further consider-

ation as having major contributions to the proton ground-state wave function.

Quarks are assumed to have an anomalous magnetic moment that con-

tributes to the proton magnetic moment in addition to the Dirac magnetic

moment. The anomalous magnetic moment of a bound fermion depends on

all components of the wave function. The anomalous magnetic moment of

a bound quark is calculated following Marganeau (1940) and Miller (1975).

For equal masses and for the (1/2+)3 configuration the anomalous moment

from the quarks in NM is

m a 5 m 0(2N 2/ p 3/2) # r 5 d r [(R 2
1 /2) 1 (7R 2

2 /18) 1 (5R 2
4 /72) 1 (R 2

8 /360)] (29)

and m 0 is the anomalous magnetic moment for a ª free valence quarkº of

( a /2 p )e /m, where a is now the fine structure constant, 1/137 . . . . Keeping

the linear potential parameter constrained to reproduce the proton rms charge

radius, the predicted magnetic moment, Dirac plus anomalous, for the

(1/2 2 )3 configuration is shown in Fig. 4. The predicted moment peaks at

about 2 NM for this configuration. There may also be pionic, strange, or sea

quark contributions to the proton magnetic moment. These are neglected here

in the three-quark model of the proton. For the (1/2+)3 configuration, using

Fig. 4. The Dirac plus anomalous magnetic moment for the proton from the (1/2 2 )3

configuration with the length parameter constrained to reproduce the proton rms charge radius.
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the linear confining potential, a quark mass can be detemined such that the

Dirac plus anomalous magnetic moment reproduces the experimental value

of 2.793 NM. This assumes the u and d quark masses are the same. The
quark masses determined in this way are all less than 9 MeV, as can be seen

in Fig. 6. For the potential parameter that reproduces the proton rms charge

radius, this suggests quark masses of about 1 MeV. This has neglected any

nonvalence quark contribution to the proton magnetic moment, such as pionic,

sea, or strange quark. To the extent that their inclusion increases the proton

magnetic moment, the required quark anomalous magnetic moment would
decrease. The quark mass determined this way would increase. Therefore

these masses are only a lower limit to the quark masses within the proton.

For equal quark masses, there is no anomalous quark magnetic moment

contribution for the neutron. The neutron magnetic moment is calculated as

a function of assumed quark mass, keeping the rms proton charge radius as

a constraint on the potential length parameter L. The (1/2+)3 configuration
result can be seen in Fig. 5, where the neutron proton mass difference has

been included in the composite three-quark wave function. The neutron

magnetic moment is reproduced only for small quark masses. As the quark

mass approaches one-third of the neutron rest energy, the Dirac magnetic

moment goes to zero. This is understandable, as this behavoir is also seen
in the earlier simplified one-body Dirac equation analysis of a linear confin-

ing potential.

Fig. 5. The Dirac magnetic moment of the neutron for the (1/2+)3 configuration with the length

parameter constrained to reproduce the proton rms charge radius. Small quark masses result

in best agreement with experiment for the magnetic moment.
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Fig. 6. Average quark masses determined by requiring the Dirac plus anomalous magnetic

moment of the (1/2+)3 configuration of the valence quarks to reproduce the proton magnetic

moment.

3.3. Proton Axial Charge

We now consider the axial charge of the proton. This is primarily related

to the difference in the upper versus lower component contributions to the
composite wave function normalization. The linear confining hypercentral

potential model predicts axial charges close to the experimental value of

1.26. Figure 7 shows the predictions versus the linear potential length parame-

ter. The middle curve is for massless quarks, with the same results for the

(1/2 2 )3 configuration as for the (1/2+)3 configuration. When the potential

length parameter reproduces the proton charge rms radius, the axial charge
calculated is 1.20 for either configuration. When the quark mass is 10 MeV,

the (1/2+)3 configuration reproduces the proton axial charge as well as the

proton rms charge radius.

The axial charge predicted by the (1/2 2 )3 configuration decreases with

assumed quark mass, keeping the linear confining potential length parameter

fixed. This can be seen in Fig. 8. This configuration is not able to simultane-
ously reproduce the proton magnetic moment and axial charge when reproduc-

ing the rms charge radius in this model.

3.4 Quark Helicity in the Proton

HERMES data analyses confirm that quarks carry about 25±30% of the

neutron spin (Watson, 1997). Abe et al. (1995) have measured the quark
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Fig. 7. Proton axial charge versus length parameter of the linear confinement hypercentral

potential. Middle curve is for both the (1/2+)3 and the (1/2 2 )3 configurations with massless

quarks. Upper curve is for 10-MeV quark masses for the (1/2+)3 configuration. Lower curve

is for 10-MeV quark masses for the (1/2 2 )3 configuration.

contribution to the helicity of the proton as 0.27 6 0.10. Using the linear
confining potential with the length parameter L chosen to reproduce the

proton rms charge radius, the quark contribution to the proton helicity is

0.253, in good agreement with experiment. It is noted that only for the

component that survives in the nonrelativistic limit is there no orbital angular

momentum contribution to the nucleon spin. The upper component of the

quark wave function contribution to the norm can be seen in Fig. 9 for both
the (1/2+)3 and the (1/2 2 )3 configurations. The potential length parameter is

constrained to reproduce the proton rms charge radius. For massless quarks

these are 0.585 and 0.415, respectively. The upper component contribution

does not dominate the norm. The lower component contribution is always

comparable to the upper. This shows that including all components of the
composite wave function in the three-body Dirac equation is necessary for

these potentials and small quark masses.

4. SUMMARY

The proton is modeled as three quarks of small current quark mass. The

three-body Dirac equation is solved with a spin-independent central diagonal

linear confining potential with an attractive Coulombic term, in hypercentral

approximation. Several configurations are considered, the (1/2 2 )3, (1/2+)3,



Rest Frame Properties of the Proton 2017

Fig. 8. The axial charge versus assumed quark mass for the (1/2 2 )3 configuration.

(1/2+)2(1/2 2 ), and (1/2+)2(1/2 2 ) configurations. The latter mixed configura-
tions produce Dirac magnetic moments that are too small. These configura-

tions are deemed as not important contributors to the proton ground-state

wave function. For the symmetric configurations, the (1/2+)3 configuration

better reproduces the proton rest frame properties than does the (1/2 2 )3

configuration. The linear confining potential shape used can be inferred from

Fig. 9. Upper component contribution to the norm, upper curve (1/2+)3 configuration, lower

curve (1/2 2 )3 configuration.



2018 Strobel

QCD theory. The potential avoids the Klein paradox. Conditions for the

Schmidt limits for the magnetic moments of bound fermions are not met for

quarks with confining potentials that are not asymptotically small. The quarks
are assumed to possess anomalous magnetic moments like those of the elec-

tron and muon. Assuming all three quarks have equal mass allows fits to the

axial charge and magnetic moment to discriminate in favor of the (1/2+)3

configuration in this model. This relativistic three-quark model with small

quark masses is able to reproduce the charge rms radius, magnetic moment,

axial charge, and energy of the proton, using a (1/2+)3 configuration of quarks.
The proton rest energy is mostly potential energy and quark kinetic energy,

with little coming from the rest masses of the three quarks.
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